
Twelve Ways to Fool the Masses: 
Back to the Future

David H. Bailey
Lawrence Berkeley National Laboratory

http://crd.lbl.gov/~dhbailey



Example from Physics:
Measurements of Speed of Light

Why the discrepancy between pre-1945 and post-1945 values?  
Probably due to biases and sloppy experimental methods.



Example from the Social Sciences: 
The Blank Slate

The “Blank Slate” paradigm (1950-1990):
◊ The human mind at birth is a “blank slate.”
◊ Heredity and biology play no significant role in human 

personality – all behavioral traits are socially constructed.
Current consensus, based on latest research:

◊ Humans at birth possess sophisticated facilities for 
language acquisition, pattern recognition and social life.

◊ Heredity and biology are the dominant factors of 
personality development.

How did these scientists get it so wrong?
◊ Sloppy experimental methodology and analysis.
◊ Pervasive biases and wishful thinking.

Ref: Steven Pinker, The Blank Slate: The Modern Denial of Human Nature



History of Parallel Computing

1976-1986:  Initial research studies and demos.
1986-1990:  First large-scale systems deployed.
1990-1994:  Successes over-hyped; faults ignored; 

shoddy measurement methods used; 
questionable performance claims made.

1994-1998:  Numerous firms fail; agencies cut funds.
1998-2002:  Reassessment.
2002-2006:  Recovering?



Parallel System Performance 
Practices, circa 1990

Performance results on small-sized parallel systems 
were linearly scaled to full-sized systems.
◊ Example:  8,192-CPU results were linearly scaled to 

65,536-CPU results.
◊ Rationale: “We can’t afford a full-sized system.”
◊ Sometimes this was done without any clear disclosure 

in the paper or presentation.



Parallel System Performance 
Practices, circa 1990

Highly tuned programs were compared with 
untuned implementations on other systems.
◊ In comparisons with vector systems, often little or 

no effort was made to tune the vector code.
◊ This was the case even for comparisons with 

SIMD parallel systems – here the SIMD code can 
be directly converted to efficient vector code.



Parallel System Performance 
Practices, circa 1990

Inefficient algorithms were employed, requiring 
many more operations, in order to exhibit an 
artificially high Mflop/s rate.
◊ Some scientists employed explicit PDE schemes 

for applications where implicit schemes were 
known to be much better.

◊ One paper described doing a discrete Fourier 
transform by direct computation, rather than by 
using an FFT (8n2 operations rather than 5n log2n).



Parallel System Performance 
Practices, circa 1990

Performance rates on 32-bit floating-point data on 
one system were compared with rates on 64-bit 
data on other systems.
◊ Using 32-bit data instead of 64-bit data effectively 

doubles data bandwidth, thus yielding artificially 
high performance rates.

◊ Some computations can be done safely with 32-bit 
floating-point arithmetic, but most cannot.

◊ Even 64-bit floating-point arithmetic is not enough 
for some scientific applications – 128-bit is required.



Parallel System Performance 
Practices, circa 1990

In some cases, performance experiments reported in 
published results were not actually performed.
◊ Abstract of published paper:  

“The current Connection Machine implementation runs at 300-800 
Mflop/s on a full CM-2, or at the speed of a single processor of a 
Cray-2 on 1/4 of a CM-2.”

◊ Buried in text:
“This computation requires 568 iterations (taking 272 seconds) on 
a 16K Connection Machine.”
i.e., the computation was not run on a full 64K CM-2.
“In contrast, a Convex C210 requires 909 seconds to compute this
example.  Experience indicates that for a wide range of problems, 
a C210 is about 1/4 the speed of a single processor Cray-2, …”
i.e., the computation was not run on a Cray-2 at all.



Parallel System Performance 
Practices, circa 1990

Scientists were just as guilty as commercial 
vendors of questionable performance reporting.
◊ The examples in my files were written by 

professional scientists and published in peer-
reviewed journals and conference proceedings.

◊ One example is from an award-winning paper.
Scientists in some cases accepted free computer 
time or research funds from vendors, but did not 
disclose this fact in their papers.

Scientists should be held to a higher standard than 
vendor marketing personnel.



Performance Plot A
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Data for Plot A

Total Parallel system Vector system
Objects Run time Run time
20 8:18 0:16
40 9:11 0:26
80 11:59 0:57
160 15:07 2:11
990 21:32 19:00
9600 31:36 3:11:50*

Notes:
In last entry, the 3:11:50 figure is an estimate.
The vector system code is “not optimized.”
The vector system performance is better except for the last 
(estimated) entry.



Performance Plot B
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Facts for Plot B

32-bit performance rates on a parallel system are 
compared with 64-bit performance on a vector system.
Parallel system results are linearly extrapolated to a full-
sized system from a small system (only 1/8 size).  
The vector version of code is “unvectorized.”
The vector system “curves” are straight lines – i.e., they 
are linear extrapolations from a single data point.  

Summary:
It appears that of all points on four curves in this plot, at 
most four points represent real timings.



Twelve Ways to Fool the Masses

1. Quote only 32-bit performance results, not 64-bit 
results.

2. Present performance figures for an inner kernel, and 
then represent these figures as the performance of the 
entire application.

3. Quietly employ assembly code and other low-level 
language constructs.

4. Scale up the problem size with the number of 
processors, but omit any mention of this fact.

5. Quote performance results projected to a full system.
6. Compare your results against scalar, unoptimized code 

on conventional systems.



Twelve Ways to Fool the Masses

7. When direct run time comparisons are required, 
compare with an old code on an obsolete system.

8. If Mflop/s rates must be quoted, base the operation 
count on the parallel implementation, not on the 
best sequential implementation.

9. Quote performance in terms of processor utilization, 
parallel speedups or Mflop/s per dollar.

10. Mutilate the algorithm used in the parallel 
implementation to match the architecture.

11. Measure parallel run times on a dedicated system, 
but measure conventional run times in a busy 
environment.

12. If all else fails, show pretty pictures and animated 
videos, and don't talk about performance.



Twelve Ways: Basic Principles

Use well-understood, community-defined metrics.
Cite performance rates based on efficient algorithms, not 
on schemes that exhibit artificially high Mflop/s rates.
Use comparable levels of tuning.
Provide full details of experimental environment, so that 
performance results can be reproduced by others.
Disclose any details that might affect an objective 
interpretation of the results.
Honesty and reproducibility should characterize all work.

Danger: We can fool ourselves, as well as others.



New York Times, 22 Sept 1991



Excerpts from NYT Article

“Rival supercomputer and work station 
manufacturers are prone to hype, choosing the 
performance figures that make their own systems 
look better.”

“It’s not really to the point of widespread fraud, but 
if people aren’t somewhat more circumspect, it 
could give the field a bad name.”



Fast Forward to 2004: 
Five New Ways to Fool the Masses

Dozens of runs are made, but only the best performance 
figure is cited in the paper.
Runs are made on part of an otherwise idle system, 
placing an unrealistically light load on the network.
Performance rates are cited for a run with only one CPU 
active per node.
Special operating system or compiler settings are used 
that are not appropriate for real-world usage.
“Scalability” is defined as a successful execution on a 
large number of CPUs, regardless of performance.

And lots of: “Show pretty pictures and animated videos, 
and don't talk about performance.”



Grid Computing Projects

GRID

NSF 
Cyberinfrastructure

GEON



SETI@Home

Seti@home sustains 35 Tflop/s on 2M+ systems
1.7 x 1021 flops over 3 years



Supernova Cosmology Infrastructure
[Thanks to W. Johnston, LBNL]



Potential for Overselling the Grid

“All supercomputer computations will soon be done 
on grids.”
“With the grid, every scientist will have access to all 
scientific data.”
“A computational grid has greater capacity than its 
constituent systems.”
“Corporate data processing will soon be handled by 
SETI-at-home-style computing utilities.”
Etc.



What the Grid Does Well

Providing national or international access to 
important scientific datasets.
Providing a uniform scheme for remote system 
access and user authentication.
Providing a high-performance parallel platform 
for certain very loosely coupled computations.
Providing a high-capability platform for large 
computations that can run on a single remote 
system, chosen at run time.
Enabling new types of multi-disciplinary, multi-
system, multi-dataset research.



What the Grid Doesn’t Do So Well

Scientific computations that require heavy 
interprocessor communication.
◊ Probably the majority of high-end scientific 

computations are of this nature.
◊ This doesn’t rule out such applications running 

remotely on a single system connected to the grid.

Many classified or proprietary computations.
◊ Current grid security and privacy are not 

convincing for many of these users
◊ This doesn’t rule out “internal grids” -- some have 

been quite successful.



Combating Performance Abuse:
The Role of Intelligent Benchmarks

Well-designed, rigorous, scalable performance 
benchmark tests.
◊ Must be produced by a community-based effort.
◊ Must be a based on codes that have credibility as 

a “useful” scientific or commercial application.
◊ Must be easily implemented without lengthy, 

highly expert effort.
◊ Must be appropriate for moderate-sized systems 

as well as very large systems.
◊ Must include a clear path to increase problem 

sizes for future use.



The Role of Intelligent Benchmarks

Well-thought-out “ground rules.”
◊ How much tuning of the benchmark is permitted?
◊ How is the extent of tuning measured?
◊ How will disputes be settled?

If ground rules can be abused, they will be abused.



The Role of Intelligent Benchmarks

A rational scheme for calculating performance 
rates.
◊ How is run time measured?
◊ Is required initialization included in the run time?
◊ How will operation counts or the amount of work 

performed be reckoned?

A well-defined test to validate the correctness of 
the results.
◊ It is best if the benchmark includes its own 

scalable validity test.
◊ At the least, spot checks of results are needed.



The Role of Intelligent Benchmarks

A well-supported repository of results.
◊ Kept up to date – a long-term commitment.
◊ Includes all environmental and system 

information.
◊ New results periodically solicited.
◊ A searchable database is preferred.



Twelve Ways: Back to the Future

Use well-understood, community-defined metrics.
Cite performance rates based on efficient algorithms, not 
on schemes that exhibit artificially high Mflop/s rates.
Use comparable levels of tuning.
Provide full details of experimental environment, so that 
performance results can be reproduced by others.
Disclose any details that might affect an objective 
interpretation of the results.
Honesty and reproducibility should characterize all work.

Danger: We can fool ourselves, as well as others.


